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Blind Facial Image Quality Enhancement
Using Non-Rigid Semantic Patches

Ester Hait and Guy Gilboa, Member, IEEE

Abstract— We propose a new way to solve a very general blind
inverse problem of multiple simultaneous degradations, such as
blur, resolution reduction, noise, and contrast changes, without
explicitly estimating the degradation. The proposed concept is
based on combining semantic non-rigid patches, problem-specific
high-quality prior data, and non-rigid registration tools. We show
how a significant quality enhancement can be achieved, both
visually and quantitatively, in the case of facial images. The
method is demonstrated on the problem of cellular photography
quality enhancement of dark facial images for different identities,
expressions, and poses, and is compared with the state-of-the-
art denoising, deblurring, super-resolution, and color-correction
methods.

Index Terms— Prior-based image quality enhancement,
similarity measures, non-rigid registration, denoising, deblurring,
super-resolution.

I. INTRODUCTION

IN THIS paper we propose a new way to solve the following
very general and challenging blind inverse problem:

f = T (g) + N(g), (1)

where f is the degraded input image and g is the unknown
original image to be recovered. T is an unknown com-
plex degradation transformation, which may include multiple
degradations: resolution reduction, blur and contrast and color
changes. The degradation T can be spatially varying and
may include nonlinearities, so it cannot be modeled by a
convolution kernel. N is noise, which can also be of various
characteristics; It may be signal-dependent and with spatially-
varying statistics. Thus a parametric model is very hard to
establish for this general case. Our main assumption is that
the degradations are structure-preserving, such that significant
edges and structures are retained. This assumption will be
made more formal hereafter. As problem (1) is highly chal-
lenging, it was not frequently tackled in image processing; it
is extremely ill-posed and cannot be solved without additional
strong priors or external data.

In the past decades, handling common image flaws has grad-
ually improved with the use of more sophisticated image priors
and models. Early methods used pixel-based statistics, such as
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smoothness [1], piecewise smoothness [2], total-variation [3],
pixel correlation [4], or wavelet decomposition [5] for image
reconstruction. In recent years, nonparametric patch-based
methods, such as Nonlocal Means [6] and BM3D [7],
exploited local and nonlocal self-similarities. Other patch-
based, training-based methods were using Markov Random
Fields [8] and dictionary learning [9].

In recent years, using generic image priors has started
to reach an optimality bound; e.g., for super-resolution [10]
and denoising [11]. Therefore, problem-specific priors were
used to solve specific problems. For example, facial priors
were used for facial image processing, such as face hallu-
cination [12]; face compression using K-SVD [13]; or face
deblurring, using the most similar different-identity face exam-
ple [14]. Despite this progress, today’s main state-of-the-art
methods are still based on square patches with little if any
semantic context [15]–[17]. We follow the concept of using
problem-specific priors, but propose an alternative concept of
using large, highly-semantic non-rigid patches.

We show how such a hard problem can be solved, without
explicitly estimating the degradation, by using suitable prior
data and non-rigid registration, which is robust enough to
T and N . We illustrate our algorithm on facial data quality
enhancement, where the model and underlying assumptions
are valid (Fig. 1). We use a mechanism which is invariant
to low-to-moderate quality reductions to solve the problem
indirectly. Given today’s highly available mobile photography
devices, our model assumes available high-quality personal
priors, but no knowledge of the degradation model. We use
non-rigid processing of semantic patches of facial features,
while preserving structure and context coherency. We also
assume that no matches of high quality (HQ) and low quality
(LQ) data are available for learning. As there is no degradation
model, one also cannot faithfully generate LQ images by
degrading HQ images (e.g. adding noise to a clean image).

We can conceptually describe our algorithm as an approx-
imation of the following mathematical formulation. Let
f, g, T, N be as described in problem (1), and let u be the
recovered image. u, f, g, v ∈ X belong to an image space X
(we may handle images or semantic image patches).

Let V = {vi } ⊂ X , i = 1..M , denote the space of HQ
data-specific priors. Let D(q, w) : X × X → X denote a non-
rigid registration from image q to image w, associated with
a displacement field �q,w, such that �q,w ◦ q = D(q, w).
As described in problem (1), we denote the degradation trans-
formation as T , and assume it to be unknown and complex,
yet structure-preserving. We assume the displacement field
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Fig. 1. Problem and assumptions of model: blind quality enhancement of LQ facial images using prior data. Semantic patches of facial features are extracted
to preserve structure and context coherency. Our model assumes available HQ personal priors, but no knowledge of the degradation model and no matches
of HQ and LQ data for learning.

is robust to T and N :

� f,v ≈ �g,v , �v, f ≈ �v,g, ∀v ∈ V . (2)

Let d(q, w) : X × X → R+ be a distance-type measure,
derived from the registration D(q, w), such as ‖D(q, w)−w‖,
where ‖ · ‖ is some norm. Thus, projecting g onto the space
V using d can be approximated by projecting f onto V :

argmin
v∈V

d(g, v) ≈ argmin
v∈V

d( f, v). (3)

This structure-preserving property under moderate complex
degradations will allow us to recover u ≈ g, without explicitly
finding T. We therefore define v∗( f ) as the image in V which
is the most similar to f , in the sense of the measure d:

v∗( f ) = argmin
v∈V

d( f, v). (4)

We can thus accurately select relevant prior information, while
preserving structure (thus preserving expressions in the case
of facial images).

To recover the accurate structure of u, the selected prior v∗
must be properly non-rigidly registered to the desired structure
of f :

u = D((v∗( f ), f )). (5)

Thus u is an approximated non-degraded version of the
distorted image f , which practically minimizes a fidelity term,
without explicitly finding T, N :

‖ f − T (u)‖. (6)

For example, let us assume an optimal case where g ∈ V .
Therefore from (3) and (4) we can assume with high proba-
bility that v∗( f ) = g. Thus

u = D(v∗( f ), f ) = D(g, f ) ≈ g.

The rest of the paper is organized as follows. We first
present the related work and our resulting insights, as well as
our contributions and novelties (Sec. I). We then methodologi-
cally explore the non-rigid Demon registration [18] to show its
robustness to a variety of degradations and to non-rigid varia-
tions, and thus its compliance to this concept (Sec. II). Relying
on this, we show an end-to-end application, approximating
our concept for the problem of blind quality enhancement of
facial images (Sec. III). We then demonstrate our experimental
results for dark cellular facial images, and discuss drawbacks
and future work (Sec. IV). Sec. V concludes our work.

A. Related Work

Capel and Zisserman [19] observed that better learning is
obtained when considering different facial regions, rather than
the whole face, and that better representation is needed when
handling high-detail facial regions that attract human attention.
A separate PCA basis was learned for different key facial
regions. Unlike our proposed method, they used linear PCA
decomposition and training sets of multiple people.

Jia and Gong [20] performed face hallucination of a single
modality (expression, pose and illumination) into a set of
high-resolution (HR) images of different modalities, but used
multiple people’s images as priors. Interestingly, they deduced
that hallucinating the same expression as in the test image was
better than hallucinating other expressions.

Lee et al. [21] represented multiple-pose facial images as a
low-dimensional appearance manifold in the image space, for
video face recognition. The appearance manifold, learned from
training, consisted of pose manifolds and their connectivity
matrix, encoding transition probabilities between images.

Yu et al. [22] incrementally super-resolved 3D facial texture
from video under changing light and pose, but used temporal
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information from sequential frames and a generic 3D face
model. They also handled facial non-rigidity using a local
region-based approach: using a match statistic to detect sig-
nificant facial regions expression changes between frames.

Shih et al. [23] performed noise level estimation for denois-
ing, by maximizing the joint noise probability across same-
identity facial images of different noise levels. The estimated
noise level can then be used for state-of-the-art denoising
algorithms requiring it, such as BM3D.

Joshi et al. [24] were the first to suggest the use of “personal
priors” to enhance the quality of a particular person’s image,
performing both global and face-specific corrections. They
relied on the growing available amount of personal images.
Their algorithm derived its strength from using multiple same-
identity example images, which, as they observed, can span a
smaller space than that spanned by images of multiple people.

They performed global corrections of non-facial regions
(such as deblurring, color and exposure corrections) using
mean and basis vectors generated using PCA decomposition
(of different image layers), to derive priors for MAP estima-
tion. They also performed local corrections of face regions
(hallucination for sharpening; or inpainting for exposure cor-
rection), by transferring desired properties from HQ images in
the gradient domain, using the Poisson equation.

The major drawback of this algorithm is its simplistic model
which can address only frontal images with little expression
variations and large non-facial regions. We wish to focus on a
more high-quality quality enhancement of facial regions, and
handle a variety of subtle expression variations.

Following this, Loke et al. [25] suggested to super-resolve
very LR facial images by selecting a set of the most similar
HR same-identity training images, in the sense of pose and
expression. A similarity measure, based on pose estimation
and an expression descriptor, relying on shape and texture, was
used for selection. After aligning the selected images using
triangulation and affine warping, patches of them were used
to hallucinate the face using a MRF model, based on color
and edge constraints and a smoothness term.

Drawbacks of this work include the selection process, based
on a rough match of some facial regions to the query; we
wish to handle more subtle expression variations. Replacing
LR patches with HR ones results in noticeable artifacts, seams
and change of color, since this patch-based method does not
account for the human observer’s sensitivity to certain facial
regions and their expressions. Other drawbacks are using a
very large HR dataset (thousands of images), their small size,
and the manual labeling of feature points in the LR image.

B. Insights

Previous works and early experiments point out important
insights regarding facial images of a specific individual.

• Observing the impact of facial expression variations,
we note that the non-rigid behavior of faces and
facial features under such variations requires non-rigid
registration.

• The space spanned by same-identity facial images, depict-
ing a limited range of expressions, is significantly smaller

than that spanned by multiple-identity images [24]. Using
generic faces as priors, on the other hand, introduces
artifacts and possible changes in identity and expression.

• A change in identity or expression is visually disturb-
ing to a human observer; Thus, only the most struc-
turally similar examples should be used for reconstruction
(which can also be deduced from [20], [24], [25]).

• Better learning is obtained when considering different
facial regions, rather than the whole face [19]. Artifacts
may appear when using a patch-based method, which
does not consider human sensitivity to certain facial
regions and expressions [25]. Better representation is also
needed when handling high-detail facial regions, such as
eyes, compared to smooth regions, such as cheeks [19].

• We observe that decomposing the face into facial regions
increases the versatility in generating a variety of expres-
sions (combining different eye expressions and mouth
expressions), while decreasing the number of samples
required. This allows to construct and search datasets of
small yet semantic facial regions, rather than large whole-
face images, saving both memory and computation time.

C. The Proposed Method

In our work we use personal priors to enhance the quality of
facial images of a particular person. We obtain new data-driven
facial features spaces, based on only tens of HQ, same-identity,
same-pose examples, differing in facial expression; and define
a new affinity measure to match them to given LQ queries.

For two key facial features and for different head poses,
we construct HQ, identity-specific affinity spaces, representing
various “principal modes” of the feature (different structures
and expressions). We define a new affinity measure for image
matching under non-rigid variations, which derives from the
distance between images, in the sense of the non-rigid trans-
formation [18] required to register them.

This measure corresponds to how natural, real-world inter-
polated images appear to a human observer, or their “visual
validity”. The registration can thus interpolate real-world look-
ing images, that can expand the affinity space. It also provides
a useful tool for fine registration of non-rigid facial features.

The measure’s robustness to quality degradation and non-
rigid variations enables to accurately match a query feature
to the most similar example from the suitable affinity space.
HQ information selected is then registered and embedded into
the LQ image to obtain a HQ facial image.

D. Contributions and Novelties

1) We solve an extremely difficult inverse problem of
simultaneous recovery of multiple degradations, with
no standard solutions in the literature. We assume a
complex, blind degradation model; thus, one cannot
generate LQ images by degrading HQ ones; also no
matches of such data are available for learning.

2) We integrate non-rigid registration as a tool for image
quality enhancement. Defining a new registration-based
affinity measure to search suitable data, its robustness to
moderate quality degradations and non-rigid variations
allows accurate matching.
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3) We illustrate our model and present an end-to-end solu-
tion to a real-world problem arising from the common
scenario of cellular shooting in the dark.

4) We assume that personal priors, that is facial images
of the same person, are at hand, given today’s massive
amount of personal images on personal image collec-
tions. There is very little previous work using this prior;
we present novel models and concepts to solve it.

5) We use non-rigid semantic patches. We take into con-
sideration the sensitivity of human observers to unique
facial regions and expressions, and their non-rigid
nature. We thus use semantic patches of adaptive size
and location, but of coherent structure and context.

II. REGISTRATION-BASED AFFINITY SPACE

A. Demon Diffusion-Based Non-Rigid Registration

We use the Demon registration as a registration tool for our
quality enhancement model. Demon registration, first intro-
duced by Thirion [18], [26], describes the gradual diffusion
of an object, represented by a deformable grid, into another
object, represented by a semi-permeable membrane, through
its boundaries, by the action of Demon effectors.

Thirion showed the translation of this concept into a simple
gradient-based displacement field 
u from the moving image
m to the static image s. Further improvements suggested by
Wang et al. [27] and Cachier et al. [28] yield the following:


u = (m−s) ×
( 
∇s

| 
∇s|2 + α2(s−m)2
+ 
∇m

| 
∇m|2 + α2(s−m)2

)
,

(7)

where 
∇ denotes image gradient, and α is a normalization
factor accounting for adaptive force strength adjustment.

This registration method was so far usually used for medical
image registration (e.g. [29], whose implementation we use).
A detailed explanation is given in Appendix A.

We now explore this registration tool and show it meets the
following requirements to be used in our non-rigid concept:

• Robust to moderate non-rigid structure variations; relating
to local structure (rather than global color statistics).

• Robust to moderate multiple blind quality degradations.
• Interpolating visually valid and non-valid intermediate

phases between principal modes, in correlation with a
distance measure between them.

• Fast; easy to understand and implement.
Naturally, this does not exclude other registration methods,

which may be used alternatively for the same concept. This
may be an interesting direction for future work. We give
elaborated comparisons of the Demon registration and derived
Demon measure to other registration and matching methods
in Appendix A and Figs. 28, 29.

B. Registration-Based Affinity Measure

We aim to characterize the sequence of intermediate images
generated during Demon diffusion (the “deformation path”),
using the newly-defined concept of “visual validity”: how
natural, real-world and undistorted the path appears to a human

Fig. 2. Examples of deformation paths between HQ same-identity eye
images, and their Demon measures. Compare the low Demon distances for
the visually valid paths to the higher distance for the visually non-valid path.

observer (Fig. 2 ). We thus define an affinity measure and show
its resulting high correspondence to this visual validity.

Fig. 2 shows examples of visually valid and visually
non-valid deformation paths between same-identity HQ eyes.
Moderate, interesting variations in gaze, shape or closure
between source and target images result in visually valid
interpolated images: naturally-looking, real-world facial fea-
tures. However, drastic changes result in visually non-valid
images: distorted images that cannot be considered as real-
world features.

To quantitatively characterize a deformed image by its
visual validity, we define a new Demon-based affinity measure
(Eq. (8)) between images under non-rigid variations, derived
from the transformation required to register them. We use it as
our matching criterion d(u, v) for selecting structurally-similar
principal modes of a facial feature (recall Sec. I, Eq. (4)).

The distance measure between two images is proportional
to the mean absolute error between the deformed image m at
a fixed time point T in the registration process (taken in our
implementation as 200 iterations), and the target image s:

DT (m, s, αl ) = C‖m H SV ,αl (T ) − sH SV ,αl ‖L1 (8)

Where αl indicates feature-dependent HSV color space chan-
nel selection: hue channel for mouths, value channel for eyes.
Intuitively, it is a measure of the distance “left to go” from m to
s; taking into consideration not only their naïvež pixel-to-pixel
similarity, but also Demon’s ability to successfully deform one
into another in a given time (as opposed to Cachier’s minimiza-
tion criterion, see Appendix A). It relates to local structure and
shape, as opposed to histogram distances or EMD, relating to
global, non-spatial color information. Differentiation between
distances corresponding to visually valid and non-valid images
was empirically found to be somewhat better using MAE
rather than MSE. Better differentiation was also achieved using
HSV rather than other color spaces.

Fig. 2 shows how visually valid deformation paths corre-
spond to lower Demon distances; whereas visually non-valid
deformation paths correspond to higher Demon distances.
Mouth images of a certain identity behave similarly. Note the
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Fig. 3. Correspondence between visual validity and the Demon distance (for
HQ, same-identity eye images). Compare the lower Demon distance for the
visually valid paths to the higher distances for the visually non-valid paths.

Fig. 4. Effect of time parameter T: As T increases, the distance of a
HQ example (source) to a LQ query (target) decreases; The ratio between
distances, when comparing distant vs. similar examples, becomes smaller,
thus making differentiation less reliable. We thus choose a relatively small T.
However, a too small T (50 iter.) might not allow significant deformation yet.

similar behavior shown in Appendix B when deforming syn-
thetic images: for moderate variations, deformation succeeds
and the measure moderately increases with variation. But for
more drastic variations, the deformed image becomes too
different or distorted; and the measure drastically increases.

Fig. 3 shows the correspondence between visual validity
and the Demon distance for HQ, same-identity eye images.
Visual validities were determined using the concept described
above. Lower values of the Demon distance correspond
to visually valid deformation paths, and vice versa. Thus
the measure better reflects human visual judgment of visual
validity, allowing automatic differentiation between different
visual validity categories. Note that we later use a nearest-
neighbor scheme to choose the most relevant patch, so no
actual threshold of validity is needed.

A visually valid deformation path allows using interpolated
images as new naturally-looking intermediate phases of subtle
variations between existing principal modes, thus potentially
expanding the dataset. The measure cannot be considered
as a distance or metric in the mathematical sense, as a
triangle inequality cannot be shown. Fig. 4 shows the effect
of the time parameter T: as T increases, distances decrease.
When comparing the distances of a LQ query to a distant
HQ example, vs. a similar example, then the following ratio
between distances:

DT (example1, query) − DT (example2, query)

DT (example2, query)

becomes smaller as T increases, thus making differentiation
less reliable. We thus choose a relatively small T (also to save
running time).

Illumination consistency between images has much influ-
ence on Demon registration distortion (Fig. 5). Register-
ing images similar in shape and structure, but differing

Fig. 5. Demon deformation of similar-structure HQ to LQ images, and the
effect of illumination adjustment: the naturally-looking, HQ image obtained
when deforming same-illumination images (top); compared to the distorted
image obtained when deforming different-illumination images (bottom).

in illumination, results in a distorted interpolated image,
whereas a naturally-looking, same-structure, HQ result is
obtained when first performing illumination adjustment
(we use the simple histogram equalization). This example
also illustrates the two useful qualities of this registration:
robustness to quality degradation and preservation of
source quality. When deforming a HQ image into a similar-
illumination, similar-structure LQ image, the deformed image
is both naturally-looking and of quite high quality.

Concluding Demon’s important characteristics:
1) Correspondence between Demon measure and visual

validity: The measure relates to the registration’s ability
to bring one image close to another under moderate non-
rigid variations, while preserving real-world appearance.

2) Robustness to quality degradation: This holds given
consistent illumination, e.g. for noise and resolution
reduction; Therefore, in HQ to LQ image registration,
low distances still correspond to similar structures.

3) Preserving source quality when registering different-
quality images: registering a HQ image to a similar-
shape LQ image preserves its high quality, while
adjusting to the desired shape, as can be seen in Fig. 5.

Combining these characteristics allows performing a measure-
based Nearest Neighbor search to match a LQ query to the
most structurally-similar HQ dataset example. It then enables
fine non-rigid, quality-preserving registration of the HQ match
to the LQ query, such that the result is naturally-looking and
of desirable shape and quite HQ.

C. Registration-Based Facial Features Affinity Spaces

Fig. 8 illustrates the concept of an affinity space based
on the Demon affinity measure, with a geodesic of visually
valid deformation paths, depicting intermediate deformation
steps between principal modes. Visually non-valid paths are
not allowed, as they do not generate new naturally-looking
images. Fig. 9 shows part of a real affinity space of same-
identity, same-pose eyes, automatically constructed using
the Demon measure. Note that the outlier of a non-frontal



2710 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 6, JUNE 2017

Fig. 6. Examples of our personal priors image set, which includes 7 sets of different identities and poses; each consists of 20-30 same-identity, same-pose,
multiple-expression HQ cellular images.

Fig. 7. Algorithm’s flowchart: Facial image quality enhancement using registration-based affinity measure and affinity spaces.

eye (uppermost right), wrongly classified as frontal during
preprocessing (see Sec. III-A), is unconnected to all others.

We use only tens of personal priors images to automatically
construct 14 data-driven spaces. Each space consists of mul-
tiple (about 20-30) HQ, same-identity, same-pose examples
(2 identities with 2 poses each; one identity with 3 poses) of a
specific facial feature (left eye or mouth). Note that we do not
construct spaces for right eyes, see Sec. III-C. Fig. 6 shows
examples of the personal priors image set. As opposed to
previous works, affinity spaces describe many different subtle
expression variations, such as different eye gaze, closure and
shape, or different mouth closure, shape and expression.

In the future, it might be possible to use the subset of the
most similar principal modes and visually valid interpolated
images between them as priors or constrains within a more
generalized framework of image restoration. Another option
is making the selection process more time-efficient, by per-
forming a more sophisticated initial projection of the query
onto the set, before performing a more comprehensive search.

III. FACIAL IMAGE QUALITY ENHANCEMENT

Relying on the concept of non-rigid registration of semantic
patches of personal priors, we present an end-to-end applica-
tion which approximates this concept for semantically-aware

Fig. 8. Illustration of an eye affinity space, constructed based on the Demon-
based affinity measure. Visually valid deformation paths and interpolated
images appear in green, whereas visually non-valid ones appear in red.

quality enhancement of facial images, using a Nearest
Neighbor search. Fig. 7 illustrates the proposed method.

The details of the algorithm are as follows:

A. Preprocessing: Facial Features Extraction

We use [30] to detect the facial contour, whose convex
hull is used as input to image matting [31]. Thresholding and
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Fig. 9. Example of part of a real affinity space of same-identity, same-pose
eyes, automatically constructed using the Demon affinity measure.

Algorithm 1 Facial Image Quality Enhancement

erosion of the resulting mask (similar to the preprocessing
in [24]) result in a more accurately detected head image, later
used to extract head & skin information. We also use their pose
estimation, to later search the suitable (same pose-sign) affinity
space. For a more accurate facial landmarks localization we
prefer using [32], with the head image as input. Note, that
HQ images are similarly processed for pose estimation,
features and head extraction, to construct the HQ spaces.

B. NN Search Using the Affinity Measure

We conduct Nearest Neighbor searches through suitable
(same pose-sign) affinity spaces. The Demon affinity measure
is used as a matching criterion to find the HQ dataset
example which best matches a given LQ query. This is
allowed due to the measure’s robustness to image quality
degradation. Note, that this search does not require knowledge
of the connections between dataset images, or paths’ visual
validities. Throughout the search, illumination adjustment
(using histogram equalization) is performed prior to distance
calculation.

Performing registration on only one image channel reduces
running time: using a Matlab code and the computing
resources described in Sec. IV, for T=200 iterations, each
registration takes about 1 sec. Using parallel computing,
performing NN over a 20-examples space takes about 6.3 sec.
Relying on [24], we assume that for a certain pose, only a
limited variety of facial expressions is possible, which can

Fig. 10. Quality enhancement example (1020X768): identity #2, right
pose. (a) LQ input image, NIQE score=1.2032. (b) Brightened input using
NRDC [33], NIQE score=1.1058. (c) Proposed method, NIQE score=1.0187.
(d) BM3D Denoising of (b) using [7], NIQE score=1.6097. (e) Deblurring of
(b) using [36], NIQE score=1.1346. (f) Deblurring of (b) using [37], NIQE
score=1.2835. (g) Tone enhancement of (a) using [38], NIQE score=1.227.
(h) HQ example for mouth, head & illum. info. (i) HQ example for eyes info.
(j) Difference image: (b) to (c).

be spanned using about 20-30 same pose-sign examples. For
larger pose variations, due to inaccuracies in pose estimation,
more accurately differentiating between poses will require
better preprocessing; Following that, tens of examples will be
needed to handle each pose, at the same computational cost.

C. Inferring Data From Highly-Correlated Regions

We use structure and context correlations between seman-
tically meaningful face regions to infer further suitable data.
To select the proper right eye, based on the left eyes space,
we make the reasonable assumption of gaze, closure and
shape consistency between both eyes (ignoring cross-eye and
winking). This allows to extract the suitable right eye from the
same HQ image from which the left eye example was taken.
Thus, avoiding the need to construct a right eyes space.

Another use of facial semantic structural constrains regards
head and skin information. In general, the shape of middle-low
facial regions (cheeks, chin, facial lower contour and even
nose) depends on the mouth expression, but not on the
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Fig. 11. Quality enhancement example (1050X658): identity #1, frontal
pose. (a) LQ input image, NIQE score=1.4501. (b) Brightened input using
NRDC [33], NIQE score=1.2203. (c) Proposed method, NIQE score=1.1858.
(d) BM3D Denoising of (b) using [7], NIQE score=1.9304. (e) Deblurring of
(b) using [36], NIQE score=1.2937. (f) Deblurring of (b) using [37], NIQE
score=1.4815. (g) Tone enhancement of (a) using [38], NIQE score=1.2499.
(h) Difference image: (b) to (c). (i) No head reg. (j) No blending.

eye expression. Thus it is only reasonable to use the same
HQ image from which the mouth was taken to also extract
head & skin information. The HQ example image is used as
reference for illumination adjustment and for extracting the
head/skin.

D. Embedding High-Quality Image Details

The input image and input head/skin undergo illumina-
tion adjustment to the brighter illumination of the selected
HQ example image and HQ head/skin, respectively, using
the NRDC algorithm [33]. Due to its randomized nature
(using Generalized PatchMatch), we choose out of several
repetitions the best illuminated HQ example image, in the
sense of its NIQE score [34] (see Sec. IV). The example
head/skin undergoes affine registration to best fit the input.
As to the facial features, input features undergo illumination
adjustment to the brighter HQ illumination. Then, example
features undergo fine non-rigid registration to best fit the input
feature structure. Finally, we embed the HQ head/skin and
facial features into the brightened input using blending [35],
to produce a seamless, smooth appearance.

Fig. 12. Quality enhancement example: identity #2, right pose, close up.

IV. EXPERIMENTAL RESULTS

We now show experimental results for our prior-based
quality enhancement algorithm.1

A. Experimental Setup

Input facial images were taken using a SAMSUNG
GT-S7580L cellular frontal camera (2560X1536 resolution) in
a dark environment. We assume no known information regard-
ing the camera’s specifications and built-in image processing
algorithms. Thus, this real life scenario of dark environment
cellular shooting demonstrates well common flaws, such as
noise post-processed by unknown (possibly nonlinear) fil-
tering, slight motion blur, resolution reduction of unknown
parameters, and changes of contrast and color (for recent
works on tone and contrast enhancement, see [38], [40], [41]).
Prior images were taken using the same cellular camera in an
indoor well-illuminated environment. Prior and input images
were downsampled by a factor of 2 before processing. Final
results were cropped to focus on the face region. Using an
unoptimized Matlab code with Matlab/C++ code segments,
on a Windows 7 OS, Intel i7-4770 CPU at 3.4 GHz with
16GB RAM, the running time using a single NRDC-NIQE
iteration was 3 minutes; running time was 4 minutes when
using 5 iterations.

B. Visual and Quantitative Results

We demonstrate our results for multiple identities, poses
and expressions. Figs. 10 to 16 display visual and quantitative

1Further results can be found at: https://visl.technion.ac.il/research/etyh/
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Fig. 13. Quality enhancement example (950X640): identity #3, frontal pose. (a) LQ input image, NIQE score=1.2442. (b) Tone enhancement of (a) using [38],
NIQE score=1.1663. (c) Brightened input using NRDC [33], NIQE score=1.2274. (d) Proposed method, NIQE score=1.1107. (e) BM3D Denoising of (c)
using [7], NIQE score=1.7819. (f) Deblurring of (c) using [36], NIQE score=1.2198. (g) Deblurring of (c) using [37], NIQE score=1.4076.

Fig. 14. Quality enhancement example: identity #3, frontal pose, close up.

comparisons of our results to multiple different methods.
We compare our results to the degraded input image; tone and
contrast enhancement using entropy maximization and quan-
tization resolution upconversion [38]; a prior-based bright-
ened version, using NRDC illumination adjustment [33]; and
three state-of-the-art quality enhancement methods (using their
default parameters): BM3D color denoising [7] (assuming
AWG noise of std=10); blind deblurring, using a coupled
adaptive sparse prior [36]; and blind deblurring using a
dark channel prior [37]; All performed on the brightened
image.

Figs. 19 to 22 compare our results visually and quanti-
tatively to a state-of-the-art super-resolution algorithm using
sparse representation [39] (using default parameters). First,
we downsample and upsample the input (by a factor of 4,
using bicubic interpolation) to get the new dark input
(“dark LQ image”). This is used to find best matching

patches and hence to adjust the illumination to generate the
“initial brightened image”. We now again reduce the res-
olution by a factor of 4, and compare the following four
methods:

1) The “proposed method”: bicubic interpolation (“bicubic
interpolated brightened image”) is used as background
for HQ details embedding using our method.

2) “SR using default 1024-dictionary”: SR using a
pre-trained dictionary of size 1024 of natural images.

3) “SR using default 512-dictionary”: SR using a
pre-trained dictionary of size 512 of natural images.

4) “SR using specifically-trained 512-dictionary”: SR using
a specifically-trained dictionary of size 512 of facial
images of the same identity and pose as the input image.

Since no ground truth images are available,
a no-reference (NR) image quality assessment (IQA)
measure is required. We use the NR blind-model IQA score
NIQE [34] to quantitatively compare the methods. It is a
“distortion unaware” measure: no learning was performed on
distorted images of specific distortions. Therefore, rather than
tuning to specific distortions, it measures deviations from
natural image statistics of images considered to be of “good
quality”. It thus better suits unconstrained environments,
such as our complex and blind degradation model. Having
examined several NR IQA measures [42]–[44], we found
NIQE the most reliable one. Only NIQE was consistent,
in the sense that HQ images should get better scores than
LQ or processed ones; and well-illuminated images - better
scores than dark ones.

We display the NIQE scores of the processed images,
normalized to the NIQE score of the HQ example image.
As the NIQE score decreases as quality increases, the closer
the normalized score is to 1 - the better the quality. It can be
seen for all examples, both visually and quantitatively, that
our algorithm yields better results than all other methods.
Our results have a vivid and natural appearance; New HQ
details and fine textures are embedded into the image and noise
is removed, while preserving pose, expression and identity.

Table I and Fig. 17 show a comprehensive quantitative
quality analysis, using the NIQE score, of 17 examples
of different identities, poses and expressions, comparing our
method; the degraded input; the brightened image; BM3D
denoising; and the two deblurring methods. Recall that the
closer the normalized score is to 1 - the better the quality.
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Fig. 15. Quality enhancement example (1130X710): identity #2, frontal pose. (a) LQ input image, NIQE score=1.3085. (b) Tone enhancement of (a) using [38],
NIQE score=1.2987. (c) Brightened input using NRDC [33], NIQE score=1.1315. (d) Proposed method, NIQE score=1.091. (e) BM3D Denoising of (c)
using [7], NIQE score=1.6522. (f) Deblurring of (c) using [36], NIQE score=1.1118. (g) Deblurring of (c) using [37], NIQE score=1.1753.

Fig. 16. Quality enhancement example (950X668): identity #1, right pose. (a) LQ input image, NIQE score=1.4289. (b) Tone enhancement of (a) using [38],
NIQE score=1.3957. (c) Brightened input using NRDC [33], NIQE score=1.2712. (d) Proposed method, NIQE score=1.1921. (e) BM3D Denoising of (c)
using [7], NIQE score=2.0071. (f) Deblurring of (c) using [36], NIQE score=1.2687. (g) Deblurring of (c) using [37], NIQE score=1.5122.

TABLE I

NORMALIZED NIQE QUALITY ASSESSMENT FOR 17 EXAMPLES: OUR METHOD COMPARED TO DENOISING AND DEBLURRING METHODS

Fig. 17. Normalized NIQE scores for 17 examples: Our method compared
to Denoising and Deblurring methods. Recall: the closer the normalized score
is to 1 - the better the quality. Our method outperforms all other methods.

For all examples we can see that our method outper-
forms all other methods. One should note though that
these methods were not originally designed to handle such
complex, blind quality degradation, but standard synthetic
degradations (e.g., BM3D works well for AWGN with known
noise variance).

Table II and Fig. 18 show a comprehensive quantitative
quality analysis, using the NIQE score, of 17 examples

Fig. 18. Normalized NIQE scores for 17 examples: Our method compared
to SR methods. Recall: the closer the normalized score is to 1 - the better the
quality. Our method outperforms all other methods.

of different identities, poses and expressions, comparing our
method and the SR methods. For all examples we can
see that our method significantly outperforms the SR
methods. We can see no visual differences when using
different dictionaries, even though one can expect larger
dictionaries and specifically-trained dictionaries to perform
better. We assume that given our complex, blind degradation
model, rather than a synthetic resolution reduction model, the



HAIT AND GILBOA: BLIND FACIAL IMAGE QUALITY ENHANCEMENT USING NON-RIGID SEMANTIC PATCHES 2715

TABLE II

NORMALIZED NIQE QUALITY ASSESSMENT FOR 17 EXAMPLES: OUR METHOD COMPARED TO SR METHOD [39]

Fig. 19. Comparison to super-resolution (1020X768): identity #2, right pose. (a) Dark LQ image, NIQE score=1.4893. (b) Initial brightened image,
NIQE score=1.4087. (c) Bicubic interpolated brightened image, NIQE score=2.0556. (d) Proposed method, NIQE score=1.3128. (e) SR [39] using default
512-dictionary, NIQE score=1.6877. (f) SR [39] using default 1024-dictionary, NIQE score=1.7395. (g) SR [39] using specifically-trained 512-dictionary,
NIQE score=1.7842.

Fig. 20. Comparison to super-resolution: identity #2, right pose, close up.

algorithm’s ability to handle it is quite limited, regardless of
the dictionary used. This also explains why quantitative results
also show no advantage using larger or specifically-trained
dictionaries.

Figs. 12, 14, 20, 22 show a close-up comparison of signifi-
cant facial regions (that attract human attention and convey
facial expression) for different methods. Difference images
between the brightened images and our results (Figs. 10, 11)

show how using personal priors embeds HQ image details
and fine textures, e.g. in the eyes, eyebrows, mouth and skin.
Fig. 10 also displays the HQ example images used to extract
prior information. One HQ image is used to extract mouth
and head/skin information and for background illumination
adjustment; It is similar in pose and mouth expression to
the input, but is different in eye expression, background,
hair and clothes. Another HQ image is used to extract eyes
information.

In Figs. 11, 23 we discuss the effect of errors or omission
of certain stages in the algorithm. Fig. 11 shows the necessity
of the head registration and blending stages for visually
reasonable results. Fig. 23 shows the effect of erroneous
example facial feature selection. The Demon measure allows
accurate selection. But what if the selection process resulted in
errors? For example, due to insufficient expression variations
in the dataset; or when skipping the illumination adjustment
phase (see Fig. 5). The registration’s robustness to moderate
non-rigid variations allows it to overcome moderate selection
errors, such that the interpolated features are of quite desirable
shape, but somewhat distorted. However, features interpolated
using very wrongly selected examples display wrong and
distorted expressions.

C. Future Work

The concept of non-rigid registration-based models for
image restoration, suggested in this work for faces, can be fur-
ther explored in various aspects. We can consider the process-
ing of more abstract non-facial data, such as other natural
non-rigid structures, which evolve over time, or exhibit various
structure variations (different “principal modes”). Other degra-
dation scenarios can also be explored. We can also investigate
this concept within a generalized framework. For example,
the mathematical formulation suggested in Sec. I; or using
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Fig. 21. Comparison to super-resolution (950X640): identity #3, frontal pose. (a) Dark LQ image, NIQE score=1.676. (b) Initial brightened image,
NIQE score=1.5818. (c) Bicubic interpolated brightened image, NIQE score=2.5831. (d) Proposed method, NIQE score=1.3634. (e) SR [39] using default
512-dictionary, NIQE score=2.1103. (f) SR [39] using default 1024-dictionary, NIQE score=2.1481. (g) SR [39] using specifically-trained 512-dictionary,
NIQE score=2.1656.

Fig. 22. Comparison to super-resolution: identity #3, frontal pose, close up.

a subset of the most suitable principal modes and visually
valid interpolations as priors or constraints. Another interesting
path is image quality assessment especially designed for
faces.

Fig. 24 demonstrates some minor image artifacts resulting
from drawbacks of our work. Note, that despite these artifacts,
our results still display a natural, vivid appearance and a
significant quality enhancement over the other methods, both
visually and quantitatively (see Figs. 17,18).

One drawback is the inherent limitations of using the simple
blending method [35] and the (rather robust) illumination
adjustment method [33]. When the illumination adjustment of
the input is not similar enough to the example illumination,
noticeable color transitions in the facial contour may appear
(second and third rows). Underlying information artifacts can
also result from blending. The first row shows a dark artifact
in the right eye: when the registered eye is blended into

Fig. 23. The Demon measure allows accurate selection of exam-
ple features. But what if the selection process resulted in errors?
The registration’s robustness to moderate non-rigid variations allows it to
overcome moderate selection errors, resulting in features of quite desirable
shape. However, more drastic errors result in distorted features.

the head, some of the underlying “wrong” eye (left gaze)
still shows. In the second row, some of the underlying eye-
brows still appear, due to the different “eyebrows expressions”,
and hence their locations. These drawbacks can be addressed
by improving the illumination adjustment and blending
phases.

Another artifact which rarely occurred in our experiments
is an inaccurate (yet naturally-looking) expression, due to
inaccurate example matching. This will occur if no dataset
example is structurally-similar enough to the query. The third
row shows a slight change of eye expression (closure) of the
right eye in our result, compared to the degraded input (recall
Fig. 23 demonstrating how Demon handles possible selection
errors).

This drawback can be addressed by increasing the variety
of the HQ examples dataset. Other non-rigid registration
methods, especially fluid-based, diffusion-based, or optimal
transport based methods, may also be considered. In addition,
more sophisticated and time-efficient searches can be investi-
gated to improve matching accuracy and running times. For
example, using some initial “projection” of the query onto
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Fig. 24. Minor artifacts resulting from algorithm drawbacks. 1st row: Wrong
underlying information artifact due to blending. 2nd row: Wrong underlying
information and color transitions artifacts due to blending. 3rd row: Inaccurate
expression artifact due to limited dataset variety; color transitions artifact due
to blending. Note that despite these artifacts, our results still outperform other
methods visually and quantitatively.

the space, to first get a rough notion of the relevant subset,
before performing a more comprehensive search.

V. CONCLUSION

In this work we propose a new way to solve a general and
difficult blind inverse problem, including multiple degrada-
tions such as noise, resolution reduction, contrast and color
changes. We present a novel concept for quality enhancement,
combining semantic non-rigid patches of problem-specific
priors and non-rigid registration. Our results demonstrate sig-
nificant quality enhancement, both visually and quantitatively,
for the problem of dark cellular facial images, compared to
state-of-the-art quality enhancement methods.

The blind model assumption allows a very general correc-
tion mechanism which is not device and scenario dependent.
Given today’s easily available photography devices, our model
assumes that HQ personal priors are available. We try to

Fig. 25. Demon diffusion process [26]: the “moving” object, represented by
a deformable grid, diffuses through a semi-permeable membrane representing
the boundaries of the “static” object, by the action of Demon effectors.

overcome the classical processing limits by using non-rigid
semantic patches and a registration algorithm, which is robust
to low-to-moderate quality degradations, and can infer a
HQ solution based on the priors.

Our building blocks are facial features of coherent struc-
ture and context with adaptive size and location. A new
affinity measure is defined based on the non-rigid, diffusion-
based Demon registration. We use it to construct data-driven,
HQ facial features spaces, representing various expression
variations. Its robustness to quality degradations and non-
rigid variations allows accurate matches of LQ features to
HQ examples. This enables significant quality enhancement,
relying on only tens of personal priors, maintaining well
the person’s features and expressions. In a future work we
consider processing of more abstract non-facial data within a
generalized framework.

APPENDIX A
DEMON REGISTRATION

Demon registration [18], [26] is a diffusion-based algorithm,
approximating fluid registration, using edge-based forces.

Fig. 25 (taken from [26]) shows the Demon diffusion
process. An object in the deforming image (“the moving
image”) is represented by a deformable grid, whose nodes
are labeled “inside” or “outside”; their inner relations cor-
respond to object rigidity. The boundaries of an object in
the other image (“the static image”) are represented by a
semi-permeable membrane, along which Demon effectors are
situated. The deformable grid gradually diffuses into the static
object through its boundaries by the action of Demons. Dif-
fusion is guided by the concept of maximal common polarity
at each side of the membrane: Demon effectors act to locally
“push” nodes labeled “inside” through the membrane interface
into the static object, and vice versa. To this end, Demons
might use spatial location, direction, pixel intensity or other
information.

The final transformation results from iteratively evolving
a family of transforms under two types of forces: “internal”
forces, reflecting inner relations between neighboring image
points, corresponding to image rigidity; and “external” forces,
reflecting interaction between the static and moving images.

Fig. 26 illustrates this process, showing intermediate steps in
the diffusion of an object into a same-shape translated object,
until perfect registration is achieved. Fig. 27 demonstrates
the difficulty in deforming a high-curvature shape into a
low-curvature shape in a given time, and vice versa.
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Fig. 26. Intermediate diffusion steps for object translation. From
left to right: original image and intermediate images for 200, 400, 500
and 700 iterations.

Fig. 27. Deformation of a circle to a square, and vice versa
(for 200 iterations). Left: source image. Middle: deformed image. Right: target
image. (a) From circle to square. (b) From square to circle.

Thirion [18] showed the translation of this concept into a
simple gradient-based displacement field 
u, which estimates
the displacement of a pixel in the moving image m, required
to match the corresponding point in the static image s.

Denoting pixel intensity as a function of time:
i(x(t), y(t), z(t), t), differentiating the instantaneous optical
flow equation gives:

∂i

∂x

∂x

∂ t
+ ∂i

∂y

∂y

∂ t
+ ∂i

∂z

∂z

∂ t
= −∂i

∂ t
(9)

Considering that the evolution in one time unit is the difference
between images: ∂i

∂t = s − m, and that 
u = ( dx
dt , dy

dt ,
dz
dt ) is the

instantaneous velocity from m to s, we get:


u · 
∇s = m − s (10)

where 
∇ denotes image gradient. Defining 
∇s as the internal
edge-based force, and (m − s) as the external force, 
u is
computed locally as the shortest translation of a point of m
onto the hyperplane approximating s:


u = (m − s) 
∇s

| 
∇s|2 (11)

Unfortunately, small intensity variations can result in infinite
Demon forces, and thus we need to stabilize the former
equation:


u = (m − s) 
∇s

| 
∇s|2 + (m − s)2
(12)

To improve stability and convergence speed, Wang et al. [27]
added an “active force”. Diffusion was considered a
bi-directional process, where Demon effectors also produce
an internal gradient-based force of m, that diffuses s into m.
Cachier et al. [28] suggested adding a normalization factor α
to account for the adaptive force strength adjustment, yielding
the following displacement field:


u = (m−s) ×
( 
∇s

| 
∇s|2 + α2(s−m)2
+ 
∇m

| 
∇m|2 + α2(s−m)2

)

(13)

Wang et al. introduces a simple, iterative algorithm as follows:

1) Calculation of the disp. field using Eq. (13).
2) Regularization of the disp. field using Gaussian smooth-

ing, to suppress noise and preserve geometric continuity.

Fig. 28. Comparison of Demon registration to other methods.
1st row: Demon registration finely adjusts to the desired structure, while
improving patch quality. 2nd and 3rd rows: Compared to that, Point Matching
techniques [46] have to rely on few or geometrically inconsistent features,
and therefore find few reliable (blue) matches. 4th row: Dense yet inaccurate
point sets, based on edge maps, are not properly aligned, resulting in wrong
registration [47]. 5th row: Free-form deformation based on B-splines [48], [49]
can also result in distortions.

3) Adding the regularized disp. field to the total disp. field.
4) Image deformation according to the total disp. field.
It was proved that the Demon algorithm can be seen as an

approximation of a second order gradient descent of a SSD
criterion, which can be used to compare different non-rigid
registration methods [28]. But, as opposed to our work, it was
not used as an affinity criterion or to evaluate the success of
image deformation. Demon registration was so far usually used
for medical image registration, e.g. [29].

We do not exclude other registration methods which may
be used alternatively for the same concept. However, point
set registration techniques are less suitable for our needs
than intensity-based methods, as the first rely on geometric
landmarks, which are less invariant under non-rigid struc-
ture variations [28] and complex, blind quality degradations.
Fig. 28 compares registering facial features of different quality
and similar non-rigid structures using Demon registration and
other point set based or non-rigid registration techniques. The
best matching example should generate a (non-rigidly) regis-
tered image which is both naturally-looking and of accurate
expression. Fig. 29 shows the advantage of using the Demon
measure, compared to other common feature-based matching
criteria. We compare it to two selection criteria based on
minimal error of projective transformation, based on SIFT
features [45] and RANSAC [50] outliers removal, or on SURF
features [51] and MSAC [52] (a variant of RANSAC).

APPENDIX B
DEMON REGISTRATION BEHAVIOR ANALYSIS

UNDER GEOMETRIC VARIATIONS

We explore the behavior of the time-limited
(200 iterations) Demon registration and measure between
semantically-related non-rigid image structures under geo-
metric variations. Specifically, we demonstrate the behavior
for different scales (Fig. 30), translations (Fig. 31) and
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Fig. 29. Different matching criteria for HQ example selection: Demon
measure; minimal error projective transformation using SIFT+RANSAC; and
minimal error projective transformation using SURF+MSAC. Relying on
features results in wrongly-selected examples; In many cases, no or too few
feature points could be matched; or the transformation matrix was nearly
singular. Thus the non-rigid (Demon) registrations are distorted or have
undesired structures.

Fig. 30. Demon deformation for object scaling at different factors. For each
scale factor (b)-(e): Left: source image. Middle: deformed image. Right: target
image, that is, the source image scaled. (a) Demon distance vs. scale factor.
(b) Scale factor=0.5. (c) Scale factor=0.8. (d) Scale factor=1.2. (e) Scale
factor=1.5.

Fig. 31. Demon deformation for different object translations. For
each translation (b)-(e): Left: source image. Middle: deformed image.
Right: target image, that is, the source image translated. (a) Demon distance
vs. translation. (b) Translation=−15 pixels. (c) Translation=−10 pixels.
(d) Translation=−8 pixels. (e) Translation=−5 pixels.

rotations (Fig. 32). We also explore this behavior for a
common non-rigid facial expression deformation: a change
in eye gaze (Fig. 33). Note, that changing scale involves the
dis/appearance of mass.

These experiments all illustrate the same behavior: for
moderate variations the time-limited Demon deformation suc-
ceeds: the deformed image gets as close as possible to
the target image (practically identical) (Figs. 30c, 30d, 31e,
32d, 32e, 33d, 33e); and the Demon measure moderately
increases with variation. But there exists a breaking point
where the time-limited deformation starts to fail: the deformed

Fig. 32. Demon deformation for object rotation at different angles. For
each rotation angle (b)-(e): Left: source image. Middle: deformed image.
Right: target image, that is, the source image rotated. (a) Demon distance vs.
rotation angle. (b) Rotation angle=30°. (c) Rotation angle=20°. (d) Rotation
angle=14°. (e) Rotation angle=4°.

Fig. 33. Demon deformation for different eye gaze translations. For
each translation (b)-(e): Left: source image, depicting a central gaze.
Middle: deformed image. Right: target image, depicting a gaze change.
(a) Demon distance and source to target MAE vs. eye gaze translation. (b) Eye
gaze=−15 pixels. (c) Eye gaze=−7 pixels. (d) Eye gaze=−5 pixels. (e) Eye
gaze=5 pixels.

image is too different from the target image, or distorted
(Figs. 30b, 30e, 31b to 31d, 32b, 32c, 33b, 33c); and the
measure starts to drastically increase. Compare this breaking-
point behavior to the linear behavior of the MAE between
source and target images, not reflecting the deformation’s
success / failure (Fig. 33a).
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